

Henri Casanova Francine Berman Graziano Obertelli University of California at San Diego

Rich Wolski

University of Tennessee, Knoxville

# User-Level Middleware for the Grid

- Key for a usable Grid
- Targeted to a restricted application domain
- Directly targets end-user
- Hides the complexity of the Grid

# An Application Domain: Parameter Sweeps

- Representative of large classes of applications:
  - Various simulations (Monte-Carlo, ...)
  - Parameter Searches
  - **–** . . .
- Used in various fields of science and engineering
- Large number of tasks, no task precedences in the general case ⇒ easy scheduling?
  - I/O constraint
  - multiple stages of *post-processing*

## Scheduling Issues



### Scheduling Results

[1] Heuristics for Scheduling Parameter Sweep Applications in Grid Environments
H. Casanova, A. Legrand, D. Dzagorodnov, F. Berman (HCW'00)

Scheduling Algorithms for PS Applications ?

#### Self-scheduling Algorithms

- workqueue
- workqueue w/ work stealing
- workqueue w/ work duplication
- ...

Easy to implement and quick No need for performance predictions Extremely adaptive No planning (resource selection, I/O, ...)

#### Algorithms using Gantt charts: (using heuristics)

- MinMin, MaxMin
- Sufferage, XSufferage
- ..

More difficult to implement
Slower to run
Needs performance predictions
Tunable adaptivity
Heuristics for better planning

#### Simulation results in [1] show that:

- heuristics are worth it
- Xsufferage seems like a good heuristic
- complex environments require better planning (Gantt chart)

# APST: User-Level Scheduling Middleware

- Design user-level middleware that:
  - is usable for real applications
  - is a vehicle for scheduling research
  - showcases the power of the Grid
- Challenges:
  - deployment --- use multiple software infrastructures
    - --- isolate scheduler from deployment
  - scheduling
     implement Gantt-chart heuristics
    - --- allow for multiple algorithms
    - --- adaptivity

## **Applications**

- INS2D:
  - NASA Application
  - Fluid-dynamics
- Mcell:
  - Developed at the Salk Institute
  - Molecular modeling for Biology
- Tphot:
  - Developed at Univ. of Michigan / SDSC
  - Particle Physics
- NeuralObjects:
  - Developed at the NSI
  - Neuroscience
- CS Simulation Applications for our own research:
  - Grid simulation for application-level scheduling
  - Long-range CPU forecasting
  - Bricks
  - **–** ...

### **APST** Design

APST Client

APST Daemon

The Grid



### **APST** Implementation

- Actuator's APIs are interchangeable and mixable
  - (NetSolve+IBP) + (GRAM+GASS) + (GRAM+NFS)
- Scheduler API: can be replaced at run-time
  - allows for dynamic adaptation (workqueue++
     Gantt chart)
  - still work in progress
- Use of multi-threading at multiple levels
  - latency hiding
- No Grid software is required
  - no NWS may lead to poor scheduling
  - no GASS/IBP may lead to poor performance
  - **–** ...
- About 22,000 lines of C
  - 40% scheduling, 20% Grid interface, 40% Daemon/Client

#### **APST** and Globus

- Globus 1.1.3 (used via C APIs)
- At the moment: GRAM and GASS only
- Future versions will use:
  - MDS (now using a simple file)
  - HBM
- GASS wish-list
- Deployment on larger Globus testbeds

## An Experimental Setting



#### Initial Experimental Results

#### **Experimental Setting:**

Mcell simulation with 1,200 tasks:

- composed of 6 Monte-Carlo Simulations
- input files: 1, 1, 20, 20, 100, and 100 MB

4 scenarios: Initially

- (a) all input files are only in Japan
- (b) 100MB files replicated in California
- (c) in addition, one 100MB file replicated in Tennessee
- (d) all input files replicated everywhere



#### Related Work

- Nimrod at Monash Univ
- Condor at U. Wisc
- ILAB at NASA

#### References

[2] The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid

H. Casanova, G. Obertelli, F. Berman, R. Wolsi (SuperComputing'00)



http://apples.ucsd.edu/apst



#### Next Year's goals

- Release of APST v0.1:
  - To PACIs/NASA
  - Within the next 2 months
- Add Condor support
- Improve the Globus integration (MDS, HBM)
- Enhance the user interface's capabilities
- More flexible data management
- Generalize Grid model for scheduling algs.

#### Long-Range Goals

- Dynamic and automatic scheduling algorithm selection
- Enable efficient output post-processing
- Better performance prediction:
  - combining NWS and APST metadata
  - long-range forecasts
- New scheduling algorithms
- Computational Steering